Friday, June 28, 2019

Polar Coordinates - Hacker Rank Solution

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

A complex number  
is completely determined by its real part  and imaginary part .
Here,  is the imaginary unit.
A polar coordinate (
is completely determined by modulus  and phase angle .

If we convert complex number  to its polar coordinate, we find:
: Distance from  to origin, i.e., 
: Counter clockwise angle measured from the positive -axis to the line segment that joins  to the origin.
Python's cmath module provides access to the mathematical functions for complex numbers.

This tool returns the phase of complex number  (also known as the argument of ).
>>> phase(complex(-1.0, 0.0))
3.1415926535897931

This tool returns the modulus (absolute value) of complex number .
>>> abs(complex(-1.0, 0.0))
1.0
Task
You are given a complex . Your task is to convert it to polar coordinates.
Input Format
A single line containing the complex number . Note: complex() function can be used in python to convert the input as a complex number.
Constraints
Given number is a valid complex number
Output Format
Output two lines:
The first line should contain the value of .
The second line should contain the value of .
Sample Input
  1+2j
Sample Output
 2.23606797749979 
 1.1071487177940904
Note: The output should be correct up to 3 decimal places.

Polar Coordinates - Hacker Rank Solution
cmath.polar(x) 
This tool returns a pair of  and 
 is the modulus of 
 is the phase of .

Problem Setter's code:

Python 2

from cmath import polar
polar = polar(complex(raw_input()))
print polar[0]
print polar[1]

No comments:

Post a Comment

Powered by Blogger.